Debabrata Das #### **CURRICULUM VITÆ** © +919434717424 ddas.iitkgp@gmail.com Website: www.bioh2iitkgp.in (h-index: 65, i-10 index: 154) #### — Personal Data Date of Birth: 22nd November 1953 Gender: Male Citizenship: Indian Civil Status: Married #### — Education 1985 **Ph.D.** Subject: Biochemical Engineering. Institute: Indian Institute of Technology Delhi, New Delhi, India. Thesis advisor: Prof. T. K. Ghose and Prof. K. S. Gopalakrishnan Thesis: Optimization of methane production from agricultural residues 1977 **Bachelor of Technology (B.Tech.)** Subjects: Food Technology & Biochemical Engineering Jadavpur University, Kolkata, India 1973 **Bachelor of Science (B.Sc. (Hon))** Subject: Chemistry (Hon), Physics, Mathematics Burdwan University, Burdwan, India #### — Present activities Scientific Advisor, Dhampur BioOrganic Ltd., New Delhi from 1st February, 2021. **Teaching two NPTEL 3 credits Courses** on "Aspects of Biochemical Engineering" and "Industrial Biotechnology" (AICTE approved FDP course) Reviewer of the Research project proposals submitted for Qatar National Research Fund (QNRF) **Member of National Board of Accreditation (NBA)** for Biotechnology courses in the Indian Engineering colleges Ph.D. thesis examiner of different Foreign and Indian University/Institution #### — Teaching Experience | 2021-2023 P i | rofessor (INAE-AI) | CTE Distinguished | Visiting Professor) | in SRM Institute of Science | |----------------------|--------------------|-------------------|---------------------|-----------------------------| |----------------------|--------------------|-------------------|---------------------|-----------------------------| · 1 157 44 D 6 and Technology, Chennai and Heritage Institute of Technology, Kolkata. 2018-2020 **Visiting Professor** Biotechnology Department, I.I.T., Kharagpur and P K Sinha Center for Bioenergy and Renewables 2003-2018 **Professor** Biotechnology Department, I.I.T., Kharagpur | 2012-2018 | Professor P K Sinha Center for Bioenergy & Renewables, I.I.T., Kharagpur | |-----------|---| | 1997-2003 | Associate Professor, Biotechnology Department, I.I.T., Kharagpur | | 1990-1997 | Assistant Professor, Department of Chemical Engineering, IIT, Kharagpur | | 1988-1990 | Lecturer, Department of Chemical Engineering, IIT, Kharagpur | ## — Professional Experience | 2014-2017 | Professor-in-Charge, P K Sinha Center for Bioenergy, I.I.T., Kharagpur | |-----------|--| | 2012-2015 | Renewable Energy Chair Professor, I.I.T., Kharagpur, | | 2000-2003 | Head, Biotechnology Department, I.I.T., Kharagpur, | | 1985-1986 | Biochemical Engineer, M/s Citurgia Biochemicals Ltd., Surat | | 1986-1987 | Post-Doctoral Fellow, University of Utah, USA | ## -NPTEL Web based courses taught (Undergraduate/Postgraduate level) 2017-2024 (12 weeks) (eight years) Industrial Biotechnology 2018, 2021--2023 (12 weeks) (four years) Aspects of Biochemical Engineering (AICTE approved FDP course) ## - GIAN Web based courses taught 2016 (15 hrs.) Biotechnology and process engineering for biofuels production National Institute of Technology Jalandhar, India ## - Courses Taught **Undergraduate** Biochemical Reaction Engineering, Bioreactor analysis & Design, Bioprocess Technology Biotechnology in Pollution Abatement Immobilization Technology Graduate classes Aspects of Biochemical Engineering Bioprocess Plant & Equipment Design **Energy Systems Modelling** **Laboratory classes** Biochemical Engineering **Energy Engineering** #### — Award 2013 BRSI Malaviya Memorial award (for senior faculty) For the outstanding contribution in hydrogen energy 2008 IAHE Akira Mitsui Award For the important contribution to hydrogen research 2000 DBT's Biotechnology Overseas Associateship University of Miami, Miami, USA #### - Honour | 2004 | Fellow, West Bengal Academy of Science and Technology (WAST) | |------|--| | 2011 | Fellow, Biotechnology Research Society of India (BRSI) | | 2012 | Fellow, Institute of Engineers (India) (IE) | | 2015 | Fellow, Indian National Academy of Engineers (INAE) | | 2016 | Fellow, International Association of Hydrogen Energy (IAHE) | | 2002 | Best paper award in Biotechnology Session of CHEMCON | | 2019 | Felicitated by Biological Engineering Society (BES)at IIT Madras for the | | | long-standing contribution in the area of Biological Engineering | #### — Top 2% Scientists in the world **Among top 2% Scientists (**serial no. is **26994)** in the world issued by Stanford University, USA 2022 based on citations received during the calendar year. He holds third position in the area of 'Energy' in India. ## - Technology Transferred **Technology Licence Agreement** was signed between Indian Institute of Technology Kharagpur and **M/s. Dhampur Sugar Mills Ltd, Dhampur, UP**, India on our process titled "Biohydrogen production from the cane molasses based distillery effluent" on 3rd May, 2019 ## **—** Expert members of the committees - National Board of Accreditation on Biotechnology course in the Indian Engineering Colleges - MNRE Project Monitoring Committees in "Hydrogen Energy and Fuel Cells" - Faculty selection committee of IIT Delhi, IIT Madras, IIT-BHU, Varanasi, NIT Rourkela, NIT Durgapur, NIT Raipur, Jadavpur University, Calcutta University, Tezpur University, Guwahati University, Dr. APJ Abdul Kalam Technical University, Lucknow, etc. - DBT Steering Expert Committee on Indo Brazil Bilateral Collaboration - Expert Panel Member for Screening of the Proposals received against the DST call on National Innovation Challenge Award (NICA) - INAE Sectional Committees-IX (Energy Engineering) for shortlisting of the nominations for Election of Fellows and Foreign Fellows - Examiner of Ph.D. thesis submitted in UiT The Arctic University of Norway, University of Malaya, IIT Bombay, IIT Madras, IIT Guwahati, IIT-BHU Varanasi, IIT Roorkee, IIT Delhi, NIT Rourkela, NIT Durgapur, NIT Raipur, Jadavpur University, Calcutta University, Allahabad University, Anna University, etc. ### - Member of the Editorial Board of International Journal - International Journal of Hydrogen Energy - Indian Journal of Biotechnology - Biotechnology for Biofuels - The Open Microalgae Biotechnology Journal - INAE Letters #### — Ph.D. Thesis Supervised | 1997 | Kakali
Badyopadhayay | Microbial degradation of phenolic waste | |------|-------------------------|--| | 2001 | Narendra Kumar | Hydrogen production by Enterobacter cloacae IIT-BT08 | | 2001 | David K. Daniel | Studies on glucoamylase fermentation by <i>Aspergillus awamori</i> NRRL 3112 | | 2003 | Jayshree Mishra | Molecular characterization of gene encoding for hydrogenase from | | 2004 | Jaysiii ee iviisiii a | Enterobacter cloacae IIT-BT 08 | | 2005 | Kaustubha Mohanty | Development of a multi-stage external loop airlift reactor for | | 2003 | Radocabila Monancy | wastewater treatment | | 2005 | Kaushik Nath* | Studies on Biological Hydrogen Production by Two-stage | | | | Fermentation Process | | 2006 | Devrani Mitra | Structural Characterization of Mammalian Cell Entry Proteins and | | | | Peptidyl-Prolyl Cis-Trans Isomerase A of Mycobacterium tuberculosis | | 2008 | Shireen Meher Kotay | Microbial production of hydrogen from sewage sludge | | 2012 | Tumpa Dutta | Purification and characterization of Fe-hydrogenase obtained from | | | | E. cloacae IIT-BT08 | | 2012 | Mohan Yama | Clean Energy Generation using Microbial Fuel Cells | | 2014 | Namita Khanna | Strain development and determination of suitable process | | | | parameters for maximization of hydrogen production using | | | | Enterobacter cloacae IIT-BT 08 | | | Kanhaiya Kumar | CO ₂ sequestration, hydrogen production and secondary | | | | metabolites extraction using Chlorella sorokiniana | | | J. Jose Gilbert | Hydrogen production in photobioreactor using spent medium | | | | of Dark fermentation process | | 2015 | Soumya Pandit | Improvement on the performance of microbial fuel cell by | | | | optimizing operational parameters | | | Nitai Basak | Studies on photo fermentative biohydrogen production by | | | | Purple-non-sulfur bacteria | | 2016 | Shantonu Roy | Biohydrogen production from organic residues by thermophiles | | 2017 | Supratim Ghosh | Improvement of algal biomass production for the enhancement of biodiesel yield from <i>Chlorella</i> sp. MJ 11/11 | |------|--------------------|--| | | Bikram K. Nayak | Carbon dioxide sequestration and clean energy generation using
Anabaena sp. PCC 7120 | | | Preeti Mishra | Improvement of the gaseous energy recovery by biohythane process using organic wastes | | 2018 | Sinu Kumari | Improvement of gaseous energy recovery from lignocellulosic wastes | | 2019 | G. Balachandar | Biohydrogen production from organic wastes and residues by dark Fermentation | | 2020 | Jhansi L. Varanasi | Development and application of bioelectrochemical systems for enhanced energy recovery from organic wastes | | | Ramya Veerubhotla | Development of Portable Microscale Power Generation Devices using
Electrogenic Bacteria | | | Srijoni Banerjee | Development of suitable process parameters for enhanced biodiesel production from <i>Neochloris oleoabundans</i> UTEX 1185 | | 2021 | Harshita Singh | Biohydrogen production from microalgal biomass in a biorefinery approach | | | Vaishali Singh | Fermentative hydrogen and n-butanol production by <i>Clostridium</i> saccharoperbutylacetonicum DSM 14923 | | 2022 | Sanjukta Banerjee | Development of suitable harvesting process for <i>Chlamydomonas</i> and its potentiality for biofuel production
under a biorefinery approach | ^{*} Received 'Innovative Student Projects Award 2007' of Indian National Academy of Engineering (INAE) # — Patent awarded | Indian Patent No. 188562 | A Continuous process for the production of ethanol from starchy materials | |--------------------------|--| | India Patent No. 212605 | A process for biological production of hydrogen | | India Patent No. 355538 | Development of cost effective membrane cathode assembly for a single chambered microbial fuel cell | # Patent filed • Earthen material based cathode separator assembly for scalable bioelectrochemical system (Patent Application No.805/KOL/2013). - A system for simultaneous treatment of wastewater and waste gas using a microbial carbon capture cell reactor (Patent Application No. 0471/KOL/2015) - Development of a novel microbial fuel cell (Application no. 21435) - Novel approach of biodiesel extraction process from wet microalgal biomass by using Hibiscus rosasinensis leaf extracted Fe₂O₃ nanocatalyst (Application no. 21597) #### — Design, commissioning of Pilot plants - 800 L and 10,000 L Biohydrogen pilot plant at Indian Institute of Technology, Kharagpur - 500 L and 2,000 L Biomethanation Pilot Plant at Indian Institute of Technology, Delhi - 5,000 L Biomethanation Pilot Plant at Dourala Sugar Works; Meerat - 3,000 L Biomethanation Pilot Plant at Citurgia Biochemicals Ltd. (CBL), Surat ## — Short Term Courses and Seminar cum Workshop coordinated | May 10-24, 1989 | Analysis and Design of Novel Bioreactor | |------------------------|--| | June 25 – July 7, 1990 | Biotechnology in Combating Pollution | | June 11-24, 1992 | Application of Immobilization Techniques in Biotechnology | | July 14-30, 1999 | Bioprocess Engineering with Genetically Modified Organisms | ### — National / International Symposium / Workshop organized | December 11-15, 1995 | National Seminar on "Advances in Environmental Pollution
Monitoring and Control" | | | |----------------------|--|--|--| | January 15-16, 2003 | Indo-Norwegian Seminar on 'Recent trends in Tuberculosis research' | | | | February 10-11, 2005 | International Conference on 'Functional Genomics for
Novel Vaccine and Drug Design on Tuberculosis Infection' | | | | February 7-9, 2008 | International Workshop on 'Biohydrogen Production
Technology' | | | | October 17-18, 2011 | International Workshop on "Use of solar energy for CO ₂ capture, algae technology, and hydrogen production, and subsequent use of algal biomass for commercial purpose" | | | | December 14-15, 2012 | International Conference on "Advances in Biological Hydrogen Production Processes and Applications" | | | | January 10-13, 2013 | International Conference on "Algal Biorefineries" | | | 3rd International Conference on "New and Renewable Energy Resources for Sustainable Future" # (ICONRER-2021) # — Selected Plenary / Eminent / Invited Lectures Delivered in the last 6 years | 4 January, 2024 | • | Biochemical Based Biomass to
Hydrogen Generation | |--|--|---| | 9 December, 2022 | Plenary lecture in the International
Conference on Biotechnology for
Sustainable Bioresources and Bioeconom
(BSBB-2022) | Biohythane: Fuel for the Future | | 5 November, 2022 | Delivered Key-note lecture in BESCON
2022 held in Bose Institute, Salt Lake,
Kolkata | Biohydrogen Production: A journey toward commercialization | | 25-30 May, 2022 | Series of invited online lectures at SRM
Institute of Science Institute of
Technology, Chennai | Fundamentals of biofuel production processes | | 4, 6-7, 11, 13, 18
April, 2022 | Series of invited online lectures at
Heritage Institute of Technology, Kolkata | Next generation Biofuels | | March 31, 2022 | 1 st Int. Conference on "Emerging Trends i
Science and Technology" (ICETST-2022) | in Biohythane: Fuel for the future | | March 11, 2022 | Third International Conference on
"Recent advances in bio-energy research"
(ICRABR-2022) | BioHythane production using organic wastes: the path towards a sustainable future | | 14 December,2021 | AICTE -Training and Learning
(ATAL) Faculty Development Programme
(FDP) on "Biowaste to Bioenergy: A future
sustainable energy source" | • | | 15 November, 2021 | XV National Agricultural Congress, BHU,
Varanasi | Hydrogen from Biomass
through Thermal and Microbial
Routes | | 10-12 November
&
19-21 November,
2021 | Series of invited online lectures at
Heritage Institute of Technology, Kolkata | Next Generation Fuels | | 23 September, 2021 | Key note lecture in the International
Conference on "Advanced Biology and
Social Implications" of Swami
Vivekananda University, Kolkata | Biohythane: Fuel for the future | | 13-15 September, | Series of invited online lectures at SRM | | | &
20-22 September,
2021 | Institute of Science and Technology,
Chennai | Fundamental and Technology
Advances on Biohydrogen
Production Processes | |-------------------------------|--|---| | 22 March, 2021 | Invited lecture in ONGC Webinar 'Role of
Hydrogen in Energy Regime and
preparedness of India' | Biohythane: Fuel for the future | | 11 February, 2021 | Expert talk in 3rd International
Conference on "New and Renewable
Energy Resources for Sustainable
Future" (ICONRER-2021), SKIT, Jaipur and
Assiut University (Egypt) | Biohythane from renewable organic wastes: Fuel for the future | | 11 January, 2021 | Chief Guest at the Inaugural session and delivered invited lecture in Webinar on ATAL Faculty Development Programme on "Green Technology and Sustainability Engineering" at MNNIT, Allahabad | Biohydrogen production: A
holistic approach from lab scale
to pilot-scale | | 16 December, 2020 | Webinar on opportunities & challenges for production and utilisation of hydrogen in India, NISE, New Delhi | Biohydrogen production from organic wastes: The path towards a sustainable future | | 20 September, 2020 | Webinar on "Waste to Energy", Centre for Environment, Institute of Science & Technology, JNTUH, Hyderabad | Biological hydrogen production
via Dark fermentation: A holistic
approach from Lab-scale to
Pilot-scale | | 29 August, 2020 | National Webinar on Research insights into biotechnology and Drug discovery, Osmania University | Biofuels production using renewable energy sources: The path towards a sustainable future | | 4 July, 2020 | e-Faculty Development Program cum
Workshop on Waste to Bioenergy,
Organized by Sharda University, and
Maharastra Institute of Technology | Biofuels production using renewable energy sources: The path towards a sustainable future | | 7 June, 2020 | Online summer internship programme (OSIP-2020) organized by IIChE | ratare | | | | Biofuels production from renewable energy sources;
Zero-carbon gaseous fuel | | 26-27 February, 2020 | SPARC Indo-Belgium Workshop, IIT
Kharagpur | production processes by mesophiles | | 21-23 February, 2020 | Biosangam 2020, MNNIT Allahabad | Development of Portable Power
Generation Devices using
Electrogenic Bacteria
Biohythane: Fuel for the Future | | | Indo-U.S. Interdisciplinary Workshop at IIT | 2.501, diane. I del for the I didle | | 2-3 January, 2020 | Kharagpur on 'Sustainable Biorefinery for Waste Valorization' | Biohythane: An integrated approach for maximum gaseous energy recovery from organic | |-------------------------------------|---|--| | 25–30 November,
2019 | AICTE-QIP course at IIT Kharagpur on
"Waste to Wealth - the Paradigm, Practice
and Potential"
International Conference on "Application | wastes Biohydrogen production from organic wastes | | 14-16 November,
2019 | of Biotechnology in Industry and Society" (ABIS 2019), NIT Jalandhar | Commercialization of biohydrogen production process from distillery effluent | | 18-19 October, 2019 | Biological Engineering Society (BESCON-
2019, IIT Madras | Improvement of gaseous energy
generation from organic wastes
by Biohythane process | | 17 October, 2019 | DBT National Workshop on Bioenergy,
IIT Kharagpur, Kolkata | Biochemical Based Biomass to
Hydrogen Generation | | 19-20 September,
2019 | National Workshop on Hydrogen
Generation Technologies, IISc, Bangalore | Biochemical Based Biomass to
Hydrogen Generation | | 5-6 September, 2019 | Indo-US joint workshop ;Recent Advances
in Advanced Biofuel Technologies;
'Biohydrogen, Fuel Cell & Biobutanol,
TERI, New Delhi | Biohythane: An integrated approach for maximization of gaseous energy recovery from organic wastes | | 23 October, 2018 | 2 nd Bharatna Dr. A.P.J. Abdul Kalam
Memorial Lecture, IIChE, IIT Kharagpur | Biohythane - A future fuel | | 17-23 June, 2018 | World Hydrogen Energy Convention (WHEC 2018), Rio de Janerio, Brazil | Biological hydrogen production
via Dark
fermentation: A
holistic approach from Lab-
scale to Pilot-scale | | 12 April, 2018 | National Seminar NIT Agartala | Performance of different integrated bioenergy systems to maximize energy recovery from | | 25-31 March, 2018
30 March, 2017 | Tsinghua University, Beijing, China
International Conference on Trends and
Advanced Research in. Green Energy
Technologies,ICTARGET-2017 | water hyacinth Series of lectures Improvement of gaseous energy recovery from lignocellulosic materials by biohythane process | | March 17-18, 2017 | National Workshop on
Algal Technology and its Applications,
NIT Calicut, India | Algal Biorefineries and its Potentiality | | 13-17 June, 2016 | World Hydrogen Energy Convention
(WHEC 2016), Zaragoza, Spain | Improvement of energy recovery from organic wastes by the biohydrogen followed by biobutanol fermentation using obligate anaerobes | | 17-19 Nov, 2016 | International Conference on 21 st Century
Energy Needs-Materials, System &
Applications (ICTFCEN-2016), IIT
Kharagpur | Hydrogen an Emerging Fuel of 21 st Century | |-------------------|---|---| | 4 April, 2015 | UPES, Dehradun, India | Recent development of
Biohydrogen production from
organic wastes | | 15 June, 2015 | Denmark Technical University, Denmark | High rate algal biomass
production for food, feed,
biochemicals and biofuels | | 13 April, 2015 | TBES-2015, NIT Durgapur, India | Biohydrogen production
processes from organic wastes:
Present state of art | | 6 October, 2015 | National Seminar on "Renewable Energy
Senerio in India", IICB, Kolkata | Potentiality gaseous energy recovery from organic wastes by HYMET [©] process in India | | 11 December, 2015 | Annual Convention, INOAE, Pune, India | Biohythane process for the maximization of the gaseous energy recovery from organic wastes | | 30 August, 2014 | Alto University, Finland | Integration of acidogenesis and solventogenesis for maximum energy recovery | | 28 August, 2014 | 2 nd International Conference on Algal
Biorefinery (ICAB-2014), Denmark | Carbon dioxide sequestration, hydrogen production and secondary metabolites extraction using <i>Chlorella sorokiniana</i> | | 13 June, 2014 | 2 nd International Conference on
Sustainable Solid Waste Management,
Athens | Recent advances of the biohydrogen production processes | | 8-12 June 2014 | International Conference on Clean Energy (ICCE-2014), Istanbul, Turkey | Biohydrogen Production: An
Approach towards the
Commercialization | | 13 November, 2014 | National Institute of Advanced Studies,
Bangalore | Organic wastes in India's energy supply | # **—** Sponsored Research Projects | MNRE | 1992-1994 | Two-stage biomethanation of MSW to improve bioleachate production and biogas generation | |------|-----------|---| | | 2005-2008 | Scale-up studies on production of hydrogen from <i>Enterobacter cloacae</i> IIT-BT 08 | | | 2010-2016 | Mission Mode Project on Hydrogen Production through Biological Routes | | | 2016-2019 | Maximization of Gaseous Energy Recovery from Organic Wastes through Biohythane Process | | DBT | 1999-2001 | Production of hydrogen as a cleaner fuel through waste recycling | | | 2001-2004 | Improvement of hydrogen production by over expression of the | | | | hydrogenase producing gene of high yielding strain of <i>Enterobacter cloacae</i> IIT-BT 08 in fast growing <i>Escherichia coli</i> | | | 2004-2007 | Improvement of hydrogen production from industrial wastes using hybrid | | | Bioreactor Amelioration of hydrogen production from sewage sludge using Enterobacter cloacae IIT-BT 08 | |------------------|---| | 2006-2009 | Maximization of Gaseous Energy Recovery by Simultaneous Biohydrogen
Production and Biomethanation | | 2010-2014 | High rate Algal biomass Production for food, feed, biochemicals and biofuels | | 2014-2020 | Maximization of zero carbon fuel generation from algal biomass | | | Optimal design and scale-up photobioreactor for high density algal cell
Production | | | Development of suitable microalgae harvesting technology | | DST-NSF* 2003-2 | 2007 Biohydrogen production by investigation on the hydrogenase coding gene of | | | high yielding strain of Enterobacter cloacae IIT-BT 08 in fast growing E coli | | DST-DAAD* 2004- | 2007 Studies on the Fe-hydrogenase genes of prokaryotes and eukaryotes for the improvement of hydrogen production | | MHRD 2005-2007 | Scale-up studies on the production of therapeutically important protein (FGF | | | 8) by recombinant <i>E. coli</i> | | 2017-2020 | Mass Cultivation of Microalgae for the Production of High Value Bio-Fuel | | | Fractions through Hydro-Thermal Liquefaction | | Norwegian 2008-2 | | | Ministry of | production of renewable hydrogen combined with CO2 capture, to address | | Foreign Affairs* | global warming and energy production | | DRDO 2008-2011 | Continuous hydrogen production in a photo bioreactor using spent medium of dark fermentation process | | 2012-2014 | Integrating large scale biohydrogen production and hydrogen fuel cell for sustainable power generation | | 2013-2017 | Improvement of energy recovery from waste water by dark fermentation followed by microbial fuel cells | | BRNS 2009-2012 | Design and Development of Microbial Fuel Cells | ^{*} International Sponsored Project # — Consultancy Projects | World Hydrogen Energy (WHE), USA | 2002-2003 | Pilot plant design of hydrogen generation system from sewage sludge | |-----------------------------------|-----------|---| | | 2003-2004 | Process design for a hydrogen production | | | | plant using the supernatant of the sludge | | | | treatment plant | | IFB Agro Industries Ltd., Noorpur | 2013 | Calculation of alcohol loss in the Distillery | | | | Plant | | Excise Commissioner, Govt. of | 2014 | Study and Review of the Existing System of | | West Bengal | | Measurement of Spirits in West Bengal | # - Books | Biohydrogen Production:
Fundamentals and
Technology Advances | Debabrata Das,
Namita Khanna
and Chitralekha
Nag Dasgupta | 2014 | CRC Press
Boca Raton,
FL | ISBN
9781466517998 | 408
pages | |--|--|------|--------------------------------|-----------------------|--------------| | Algal Biorefinery: an Integrated Approach | Debabrata Das
(Editor) | 2015 | Springer
Switzerland | ISBN
9783319228129 | 489
pages | | Biohythane: Fuel for the | Debabrata Das | 2016 | Pan Stanford | ISBN | 319 | | Future | and Shantonu
Roy | | Publishing
Pte. Ltd.,
Singapore | 9789814745291 | pages | |---|--|------|---|-----------------------|--------------| | Microbial Fuel Cell: A
bioelectrochemical system
that convert wastes to Watts | Debabrata Das
(Editor) | 2017 | Springer
Switzerland | ISBN
9783319667928 | 534
pages | | Fundamentals of Biofuel
Production Processes | Debabrata Das
and Jhansi L.
Varanasi | 2019 | CRC Press
Boca Raton,
FL | ISBN
9781351617512 | 268
pages | | Biochemical Engineering: An Introductory Text Book | Debabrata Das
and Debayan Das | 2019 | Jenny
Stanford
Publishing
Pte. Ltd., | ISBN
9789814800433 | 484
pages | | Biochemical Engineering: A
Laboratory Manual | Debabrata Das
and Debayan Das | 2021 | Singapore
-do- | ISBN
9789814877367 | 248
pages | | Industrial Biotechnology | Debabrata Das
and Soumya
Pandit | 2021 | CRC Press
Boca Raton,
FL | ISBN
9780367408886 | 470 pages | # **—** Monograph | 2010 | Mohanty K, Das D and
Biswas MN | Development of a Multi-stage
External Loop Air-lift Reactor
for Wastewater Treatment | VDM Verlag
Pub.,
Saarbrucken, | ISBN: 978-3-
639-29875-8 | |------|--|--|-------------------------------------|-----------------------------| | | | | Germany | | # — Guest Editor of the Peer Reviewed Journals | 2009 | Guest Editor:
Das Debabrata | Special issue of
International Workshop
on Biohydrogen
Production Technology
(IWBT 2008) | International
Journal of
Hydrogen
Energy | Organized at:
Indian
Institute of
Technology
Kharagpur | 34 (17), 7348-
7560 | |------|--|--|---|--|------------------------| | 2013 | Guest Editor:
Das Debabrata | Special issue of
International
Conference on Algal
Biorefinery (ICAB 2013) | Algological
Studies | Organized at:
Indian
Institute of
Technology
Kharagpur | 143(1), 2-87 | | 2014 | Guest Editors: Das Debabrata, M. Lakshmi Narasu and Krzysztof Urbaniec | Special issue of
International
Conference on
Advances in
Biohydrogen
Production and
Applications (ICABHPA
2012) | International
Journal of
Hydrogen
Energy | Organized
at:
JNTUH,
Hyderabad | 39(14), 7467-
7626 | # — Publication in the Peer Review Journals | 2023 | Mahata C, Dhar S,
Ray S, Das D | Biohydrogen production from starchy
wastewater in upflow anaerobic sludge
blanket (UASB) reactor: Possibilities
toward circular bioeconomy | Environmental
Technology &
Innovation | https://doi.o
rg/10.1016/j
.eti.2023.10
3044 | |------|--|---|--|--| | | Pandit S, Sharma
M, Banerjee S,
Nayak BK, Das D,
Khilari S, Prasad R | Pretreatment of cyanobacterial biomass for the production of biofuel in microbial fuel cell | Bioresource
Technology | 370, 128505 | | | Mahata C, Mishra
S, Dhar S, Ray S,
Mohanty K, Das D | Utilization of dark fermentation effluent for algal cultivation in a modified airlift photobioreactor for biomass and biocrude production | Journal of
Environmental
Management | 330, 117121 | | | Roy K, Banerjee S,
Hazra T, Das D,
Pandit S, Lahiri D,
Nag M, Ray RR,
Sarkar T,
Movendhan M,
Kavisri M | Exopolysaccharide production by <i>Anabaena</i> sp. PCC 7120: physicochemical parameter optimization and two-stage cultivation strategy to maximize the product yield | Biomass
Conversion and
Biorefinery | https://doi.o
rg/10.1007/s
13399-022-
03696-3 | | 2022 | Singh Harshita,
Rout Swagatika,
Das Debabrata | Dark fermentative biohydrogen production using pretreated Scenedesmus obliquus biomass under an integrated paradigm of biorefinery | Int. J Hydrogen
Energy | 47:102-116 | | | Basak Nitai, Jana
AK, Das Debabrata | Photofermentative biohydrogen
generation from organic acids by
Rhodobacter sphaeroides O.U.001: CFD
modelling of hydrodynamics and
temperature | Biotechnology
and Applied
Biochemistry | 69, 2, 783-
797 | | 2021 | Ray Ausmita,
Banerjee Sanjukta,
Das Debabrata, | Microalgal bio-flocculation: present scenario and prospects for commercialization | Environmental
Science and
Pollution | 28: 26294-
26312 | | | Banerjee Srijoni,
Desai Trunil S,
Srivastava
Shireesh, Das
Debabrata, | ¹³ C metabolic flux analysis (MFA) to find
out the metabolic fluxes of biomass
production and lipid accumulation in
Neochloris oleoabundans UTEX 1185 | Research Journal of Applied Phycology | 33: 1399-
1407 | | | Lal Amrit, Banerjee
Sanjukta, Das | Aspergillus sp $$. assisted bioflocculation of Chlorella MJ 11/11 for the production of | Separation and Purification | | | | Debabrata | biofuel from the algal-fungal co-pellet | Technology | 167: 107898 | |------|---|---|---|-------------------| | | Radhakrishnan R,
Banerjee S,
Banerjee S, Singh
V, Das D | Sustainable approach for the treatment of poultry manure and starchy wastewater by integrating dark fermentation and microalgal cultivation | Journal of
Material Cycles
and Waste
Management | 46: 3726-
3741 | | 2020 | Mahata Chandan,
Dhar Suman, Ray
Subhabrata, Das
Debabrata | Flocculation characteristics of extracellular polymeric substance (EPS) obtained from anaerobic sludge extracted by different methods on microalgae harvesting for lipid utilization | Biochemical
Engineering
Journal | 167:107897 | | | Santoshnambi
Yadav, Singh
Vaishali, Mahata
Chandan, Das
Debabrata | Optimization for simultaneous enhancement of biobutanol and biohydrogen production | International
Journal of
Hydrogen Energy | 284:119062 | | | Banerjee Sanjukta,
Ray Ayusmita, Das
Debabrata | Optimization of <i>Chlamydomonas</i> reinhardtii cultivation with simultaneous CO2 sequestration and biofuels production in a biorefinery framework | Science of the
Total
Environment | 133: 110155 | | | Mahata Chandan,
Dhar Suman, Ray
Subhabrata, Das
Debabrata | Effect of thermal pretreated organic wastes on the dark fermentative hydrogen production using mixed microbial consortia | Fuel | 219:113047 | | | Banerjee S,
Banerjee S, Ghosh
A and Das D
Mahata C, Ray S
and Das D | Maneuvering the genetic and metabolic pathway for improving biofuel production in algae: Present status and future prospective Optimization of dark fermentative hydrogen production from organic wastes | Renewable and Sustainable Energy Reviews Energy Conversion and Management | 43: 1487-
1497 | | | Banerjee S,
Dasgupta S, Das D
and Atta A | using acidogenic mixed consortia Influence of photobioreactor configuration on microalgal biomass | Bioprocess and
Biosystems
Engineering | 263: 116696 | | | Varanasi Jhansi L,
Prasad Sanjoy,
Singh Harshita, | Improvement of bioelectricity generation and microalgal productivity with | Fuel | 450:227679 | | | Das Debabrata
Rout Swagatika, | concomitant wastewater treatment in flat-plate microbial carbon capture cell | | 45: 5202- | | | Parwaiz Shaikh ,
Nayak Arpan
K, Varanasi Jhansi
L, Pradhan
Debabrata, Das | Improved bioelectricity generation of aircathode microbial fuel cell using sodium hexahydroxostannate as cathode catalyst | Journal of Power
Sources | 5215
45: 5227- | |------|---|---|---|-------------------------| | | Debabrata Debabrata | | | 5238 | | | Balachandar G,
Varanasi Jhansi L,
Singh Vaishali,
Singh Harshita,
Das Debabrata | Biological hydrogen production via Dark
fermentation: A holistic approach from
Lab-scale to Pilot-scale | International
Journal of
Hydrogen Energy | 45:5202- | | | Varanasi J L and
Das D | Maximizing biohydrogen production from lignocellulosic biomass by coupling dark fermentation and electrohydrogenesis | International
Journal of
Hydrogen Energy | 5215 | | | | | | 45:5227-
5238 | | 2019 | Banerjee S, Singh
H, Das D and Atta
A | Process optimization for enhanced biodiesel production by <i>Neochloris oleoabundans</i> UTEX 1185 with concomitant CO ₂ sequestration | Industrial &
Engineering
Chemistry Research | 58 (35):
15760-15771 | | | Banerjee S, Rout S,
Banerjee S, Atta A
and Das D | Fe ₂ O ₃ nano catalyst aided
transesterification for biodiesel
production from lipid - intact wet
microalgal biomass : A biorefinery
approach | Energy Conversion
and Management | 195:844-853 | | | Das D | Commercialization of biohydrogen production process from distillery effluent | International
Journal of
Hydrogen Energy | 44:18657-
18658 | | | Veerubhotla R,
Das D, and Nag S | Internet of Things temperature sensor powered by bacterial fuel cells on paper | Journal of Power
Sources | 438: 226947 | | | Singh
Vaishali, Singh
Harshita, and Das
Debabrata | Optimization of the medium composition for the improvement of hydrogen and butanol production using Clostridium saccharoperbutylacetonicum DSM | International
Journal of
Hydrogen Energy | 44: 26905-
28919 | | | Singh Harshita,
Varanasi Jhansi L.
Banerjee Srijoni | Production of carbohydrate enrich microalgal biomass as a bioenergy | Energy | 188: 116039 | # and Das Debabrata feedstock | 2018 | Varanasi JL, Kumari S and
Das D | Improvement of energy recovery from water hyacinth by using integrated system | International
Journal of
Hydrogen Energy | 43: 1303-
1318 | |------|---|---|---|-------------------| | | Rout S, Nayak AK, Varanasi
JL, Pradhan P and Das D | Enhanced energy recovery by manganese oxide/reduced graphene oxide nanocomposite as an aircathode electrode in the single-chambered microbial fuel cell | Journal of
Electroanalytical
Chemistry | 815: 1-5 | | | Kumari S, Das D | Biohythane production from
sugarcane bagasse and water
hyacinth: a way towards
promising green energy
production | Journal of Cleaner
Production | 207: 689-701 | | | Lal Amrit, Ghosh Supratim,
and Das Debabrata | Improvement in electrically induced biomass harvesting of Chlorella sp. MJ 11/11 for bulk biomass production | Journal of Applied
Phycology | 30: 979-993 | | 2017 | Ghosh Supratim, Roy
Shantonu, and Das
Debabrata | Enhancement in lipid content
of <i>Chlorella</i> sp. MJ 11/11
from the spent medium of
thermophilic biohydrogen
production process | Bioresource
Technology | 223: 219-226 | | | Varanasi JL, Sinha Pallavi
and Das D | Maximizing power generation
from dark fermentation
effluents in microbial fuel cell
by selective enrichment of
exoelectrogens and
optimization of anodic
operational parameters | Biotechnology
Letters | 39:721-730 | | | Mitra R, Balachandar G.,
Singh V, Sinha P and Das D | Improvement in energy recovery by dark fermentative biohydrogen followed by biobutanol production process using obligate
anaerobes | International
Journal of
Hydrogen
Energy | 42: 4880-
4992 | | | Ramya Veerubhotla,
Debabrata Das, Debabrata
Pradhan | A Flexible and Disposable
Battery Powered by Bacteria
Using Eyeliner Coated Paper
Electrodes | Biosensors and
Bioelectronics | 94: 464-470 | | | Kumari S, Das D | Improvement of biohydrogen production using acidogenic | International
Journal of
Hydrogen | 42: 4083-
4094 | | | | culture | Energy | | |------|--|---|---|---------------------| | | Mishra Preeti, Balachandar
G. and Das Debabrata | Improvement in biohythane production using organic solid waste and distillery effluent | Waste
Management | 66: 70-78 | | | Ghosh Supratim, Banerjee
Srijoni and Das Debabrata | Process intensification of biodiesel production from <i>Chlorella</i> sp. MJ 11/11 by single step transesterification | Algal Research | 27: 12-20 | | | Das Debabrata | A Road Map on Biohydrogen
Production from Organic
Wastes | INAE Letters | 2:153-160 | | 2016 | Kumar Kanhaiya, Ghosh
Supratim, Angelidaki Irini,
Holdt Susan L.,
Karalkashev Dimitar
B., Morales Merlin Alvarado
and Das Debabrata | Recent developments on biofuels production from microalgae and macroalgae | Renewable &
Sustainable
Energy Reviews | 65: 235-249 | | | Sinha
Pallavi, Gaurav Kartik, Roy
Shantonu, Balachandar
G and Das Debabrata | Improvement of biohydrogen production with novel augmentation strategy using different organic residues | International
Journal of
Hydrogen
Energy | 41: 14015-
14025 | | | Sinha Pallavi, Roy
Shantonu and Das
Debabrata | Genomic and Proteomic approaches for dark fermentative biohydrogen production | Renewable &
Sustainable
Energy Reviews | 56: 1308-
1321 | | | Shantonu Roy, Debabrata
Das | Biohythane production from organic wastes: Present state of art | Environmental
Science and
Pollution
Research | 23: 9391–
9410 | | | Lal A and Das D | Biomass production and identification of suitable harvesting technique for Chlorella sp. MJ 11/11 and Synechocystis PCC 680 | 3 Biotechnology | 6, 1-10 | | | Chakraborty S, Mohanty D,
Ghosh, S, and Das D | Improvement of lipid content of Chlorella minutissima MCC 5 for biodiesel production, | Journal of
Bioscience and
Bioengineering | 122: 294–300 | | | Basak N, Jana AK and Das D | CFD modeling of hydrodynamics and optimization of photofermentative hydrogen production by Rhodopseudomonas palustris DSM123 in annular | International
Journal of
Hydrogen Energy | 41: 7301-
7317 | # photobioreactor | | Varanasi JL, Nayak AK, Sohn
Y, Pradhan D and Das D | Improvement of power generation of microbial fuel cell by integrating tungsten oxide electrocatalyst with pure or mixed culture biocatalysts | Electrochimica
Acta | 199: 154–163 | |------|---|--|--|--------------------| | | Kumari Sinu and Das
Debabrata Das | Biologically pretreated sugarcane top as a potential raw material for the enhancement of gaseous energy recovery by two stage biohythane process | Bioresource
Technology, | 218: 1090-
1097 | | | Kumar Anaparthi Ganesh,
Bera Debaditya, Banerjee
Susanta, Ramya V, and Das
Debabrata | Sulfonated poly(ether imide)s with fluorenyl and trifluoromethyl groups: Application in microbial fuel cell (MFC), | European
Polymer Journal | 83: 114-128 | | | Das D | Improvement of gaseous energy recovery from organic wastes using biohythane process | Journal of
Bioprocessing &
Biotechniques | 6, 45 | | 2015 | Ghosh S, Roy S and Das D | Improvement of Biomass Production by <i>Chlorella sp.</i> MJ 11/11 for Use as a Feedstock for Biodiesel | Applied
Biochemistry and
Biotechnology | 175:3322-
3335 | | | Pandit S, Khilari S, Roy S,
Ghangrekar M. M., Pradhan
D, Das D | Reduction of start-up time
through bioaugmentation
process in microbial fuel cells
using a newly isolated microbial
strain in anode | Water Science
and Technology | 72.1: 106-
115 | | | Varanasi J L, Roy S, Pandit S,
Das D | Improvement of energy recovery from cellobiose by thermophillic dark fermentative hydrogen production followed by microbial fuel cell | International
Journal of
Hydrogen Energy | 40: 8311-
8321 | | | Veerubhotla Ramya,
Bandopadhyay Aditya, Das
Debabrata and Chakraborty
Suman | Instant power generation from an air-breathing paper and pencil based bacterial bio-fuel cell | Lab on a Chip | 15: 2580-
2583 | | | Sinha Pallavi, Roy Shantonu,
Das Debabrata | Role of formate hydrogen lyase complex in hydrogen production in facultative anaerobes | International
Journal of
Hydrogen Energy | 40: 8806-
8815 | | | Roy Shantonu, Banerjee
Debopam, Dutta Mainak,
Das Debabrata | Metabolically redirected
biohydrogen pathway
integrated with biomethanation
for improved gaseous energy
recovery | Fuel | 158: 471-478 | |------|--|--|--|---------------------| | | Dev Subhabrata, Roy
Shantonu , Das Debabrata,
Bhattacharya Jayanta | Improvement of Biological
Sulfate Reduction by
Supplementation of Nitrogen
Rich Extract Prepared from
Organic Marine Wastes | International
Biodeterioration
&
Biodegradation | 104: 264-273 | | | Kumari Sinu and Das
Debabrata | Improvement of gaseous energy recovery from sugarcane bagasse by Dark fermentation followed by Biomethanation process | Bioresource
Technology | 194: 354-363 | | | Das B K, Roy S, Dev S, Das D
and Bhattacharya J | Improvement of the degradation of sulphate rich waste water using sweetmeat waste (SMW) as nutrient supplement | Journal of
Hazardous
Materials | 300: 796-807 | | | Khilari Santimoy, Pandit
Soumya, Varanasi Jhansi L.,
Das Debabrata, and Pradhan
Debabrata | Bifunctional Manganese
Ferrite/Polyaniline Hybrid as
Electrode Material for
Enhanced Energy Recovery in
Microbial Fuel Cell | ACS
Applied Materials
and Interfaces | 7:
20657–20666 | | | Mishra Preeti, Roy
Shantonu, Das Debabrata | Comparative evaluation of the hydrogen production by mixed consortium, synthetic coculture and pure culture using distillery effluent | Bioresource
Technology | 198: 593–602 | | 2014 | Pandit A, Khilaro S, Bera K,
Pradhan D, and Das D | Application of PVA-PDDA polymer electrolyte composite anion exchange membrane separator for improved bioelectricity production in a single chambered microbial fuel cell | Chemical
Engineering
Journal | 257: 138-147 | | | Kumar K, Nag Dasgupta C
and Das D | Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass | Bioresource
Technology | 167:358-366 | | | Basak N, Jana AK and Das D | Optimization of molecular
hydrogen production
by Rhodobacter
sphaeroides O.U.001 in the | International
Journal of
Hydrogen | 39: 11889-
11901 | | | annular photobioreactor using response surface methodology | Energy | | |--|--|---|-------------------| | Pandit A, Khilaro S, Pradhan D, and Das D | Improvement of power generation using Shewanella putrefaciens mediated bioanode in a single chambered Microbial Fuel Cell: Effect of different anodic operating conditions | Bioresource
Technology | 166: 451-457 | | Eldin J, Kumar K and Das D | Physicochemical parameters optimization and purification of phycobiliproteins from the isolated <i>Nostoc</i> sp., | Bioresource
Technology | 166: 541-547 | | Das D and Laksmi Narasu M. | Forward of International
Conference on Advances in
Biological Hydrogen Production
and Applications (ICABHPA
2012), | International
Journal of
Hydrogen
Energy | 39: 7467 | | Kumar K, Banerjee D and
Das D | Carbon dioxide sequestration from industrial flue gas by, Chlorella sorokiniana | Bioresource
Technology | 152: 225-233 | | Ghadge A, Pandit A, Das D
and Ghangrkar M M | Performance of Air Cathode
Earthen Pot Microbial Fuel Cell
for Simultaneous Wastewater
Treatment with Bioelectricity
Generation | International
Journal of
Environmental
Technology and
Management, | 17: 143-153 | | Roy S, Vishnuvardhan M and Das D | Improvement of hydrogen production by thermophilic isolate Thermoanaerobacterium thermosaccharolyticum IIT BT-ST1 | International
Journal of
Hydrogen Energy | 39: 7541-
7552 | | Mishra P and Das D | Biohydrogen production
from Enterobacter cloacae IIT-
BT 08 using distillery effluent | International
Journal of
Hydrogen Energy | 39: 7496-
7507 | | Pandit A, Patel V, Ghangrkar
M M and Das D | Wastewater as anolyte for bioelectricity generation in graphite granule anode single chambered microbial fuel cell: effect of current collector | International
Journal
of
Environmental
Technology and
Management | 17: 252-267 | | Pandit S, Balachandar G and
Das D | Improvement of energy recovery from cane molasses by dark fermentation followed by microbial fuel cells | Frontiers of
Chemical Science
and Engineering | 8: 43-54 | | | Khilaro S, Pandit S, Das D
and Pradhan D. | Manganese cobaltite/polypyrrole nanocomposite-based air-cathode for sustainable power generation in the single-chambered microbial fuel cells | Biosensors and
Bioelectronics | 54:534-540 | |------|---|---|--|--------------------| | | Roy S, Kumar K, Ghosh S and
Das D | Thermophilic biohydrogen production using pretreated algal biomass as substrate | Biomass and
Bioenergy | 61:157-166 | | | Nayak BK, Roy S and Das D | Biohydrogen production from
algal biomass (Anabaena sp.
PCC 7120) cultivated in airlift
photobioreactor | International
Journal of
Hydrogen Energy | 39: 7553-
7560 | | | Basak N, Jana AK, Das D and
Saikia D | Photofermentative molecular
biohydrogen production by
purple-non-sulfur (PNS)
bacteria in various modes: the
present progress and future
perspective | International
Journal of
Hydrogen Energy | 39: 6853-
6871 | | | Roy S, Vishnuvardhan M and
Das D | Continuous thermophilic biohydrogen production in packed bed reactor | Applied Energy | 136: 51-58 | | 2013 | Khanna N and Das D | Biohydrogen production by dark fermentation | WIREs Energy
Environ | 2: 401–421 | | | Kumar K, Sirasale A and Das
D | Use of image analysis tool for
the development of light
distribution pattern inside the
photobioreactor for the algal
cultivation | Bioresource
Technology | 143: 88-95 | | | Nayak B.K. and Das D | Improvement of carbon dioxide sequestration in photobioreactor using <i>Anabaena</i> sp. PCC 7120 | Process
Biochemistry | 148: 1126-
1132 | | | Kumar K, Roy S and Das D | Continuous mode of carbon dioxide sequestration by <i>C. sorokiniana</i> and subsequent use of its biomass for hydrogen production by <i>E. cloacae</i> IIT-BT | Bioresource
Technology | 145: 116-122 | | | Khilari S, Pandit S,
Ghangrekar MM, Das D and
Pradhan D | Graphene supported α-MnO2 nanotubes as cathode catalyst for improved power generation and wastewater treatment in single-chambered microbial fuel | Royal Society of
Chemistry
Advances | 3: 7902-7911 | # cells | Das D | International Conference on
Algal Biorefinery: A potential
source of food, feed,
biochemicals, biofuels and
biofertilizers (ICAB 2013), | International
Journal of
Hydrogen Energy | 38: 5410 | |--|---|---|---------------------| | Laksmi Narasu M,
Himabindu V, Das D | International Conference on
Advances in Biological
Hydrogen Production and
Applications (ICABHPA 2012) | International
Journal of
Hydrogen
Energy | 38, 6010-
6012 | | Borse P and Das D | Advance Workshop Report on
Evaluation of Hydrogen
Producing Technologies for
Industry Relevant Application | International
Journal of
Hydrogen
Energy | 38, 11470-
11471 | | Khilari S, Pandit S,
Ghangrekar MM, Pradhan D
and Das D | Graphene Oxide-Impregnated
PVA-STA Composite Polymer
Electrolyte Membrane
Separator for Power Generation
in a Single-Chambered
Microbial Fuel Cell | Industrial & Engineering Chemistry Research, | 52: 11597–
11606 | | Nayak BK, Mukherjee G,
Savitri RD, and Das D | Modeling of Biomass Production by Anabaena under Varying Phosphate Concentrations and Light Regime | American Journal
of Biomass and
Bioenegy | 2:41-52 | | Khanna N. Ghosh AK, Huntemann M, Deshpande S, Han J, Chen A, Kyrpides N, Mavrommatis K, Szeto E, Markowitz V, Ivanova N, Pagani I, Pati A, Pitluck S, Nolan M, Woyke T, Teshima H, Chertkov O, Daligault H, Davenport K, Gu W, Munk C, Zhang X, Bruce D, Detter C, Xu Y, Quintana B, Reitenga K, Kunde Y, Green L, Erkkila T, Han C, Brambilla E-M, Lang E, Klenk H-P, Goodwin L, Chain P, Das D | Complete genome sequence of Enterobacter sp. IIT-BT 08: A potential microbial strain for high rate hydrogen production | Stand. Genomic
Sci. | 9: 359-369 | | Mukherjee, G, Nayak BK and
Das D | Cyanobacteria as a valuable source of antiviral, antibacterial and antifungal compounds – an overview | Algological
Studies Journal | 143: 3-25 | | 2012 | Pandit S, Ghosh, S,
Ghangrekar MM, Das D | Performance of an anion exchange membrane in association with cathodic parameters in a dual chamber microbial fuel cell | International
Journal of
Hydrogen Energy | 37:7383-
7392 | |------|--|---|--|--------------------| | | Kumar K, Das D | Growth characteristics of
Chlorella sorokiniana in airlift
and bubble column
photobioreactors | Bioresource
Technology, | 116:307-313 | | | Khanna N, Kumar K, Todi S,
Das D | Characteristics of cured and wild strains of Enterobacter cloacae IIT-BT 08 for the improvement of biohydrogen production | International
Journal of
Hydrogen Energy | 37:11666-
11676 | | | Pandit S, Nayak B, Das D | Microbial Carbon capture cell using cynobacteria for simultaneous power generation, carbon dioxide sequestration and waste water treatment, | Bioresource
Technology, | 107:97-102 | | | Roy S and Das D | Improvement of hydrogen production with thermophilic mixed culture from rice spent wash of distillery industry, | International
Journal of
Hydrogen
Energy, | 37:15867-
15874 | | 2011 | Ghosh S, Joy S, Das D | Multiple parameters optimization for maximization of hydrogen production using defined microbial consortia | Indian Journal of
Biotechnology | 10:196-201 | | | Kumar K, Nag Dasgupta C,
Nayak B, Lindblad P, Das D | Development of suitable photobioreactors for CO ₂ sequestration addressing global warming using green algae and cyanobacteria, | Bioresource
Technology, | 102:4945-
4953 | | | Khanna N, Kotay SM, Gilbert
JJ, Das D | Improvement of biohydrogen production by <i>Enterobacter cloacae</i> IIT-BT 08 under regulated pH | Journal of
Biotechnology | 152:9-15 | | | Pandit S, Sengupta A, Kale S,
Das D | Performance of electron
acceptor in catholyte of a two-
chambered microbial fuel cell
using anion exchange
membrane | Bioresource
Technology | 102;2736-
2744 | | | Gilbert JJ, Ray S, Das D | Hydrogen Production | International | 36;3434- | | | | Using <i>Rhodobacter</i>
sphaeroides (O.U. 001) In A Flat
Panel Rocking Photobioreactor | Journal of
Hydrogen Energy | 3441 | |------|--|--|---|--------------------| | | Nath K, Das D | Modeling and optimization of fermentative hydrogen production, | Bioresource
Technology, | 102;8569-
8581 | | | Khanna N,Nag Dasgupta C,
Mishra P, Das D | Homologous over expression of [FeFe] hydrogenase in Enterobacter cloacae IIT-BT 08 to enhance hydrogen gas production from cheese whey | International
Journal of
Hydrogen Energy | 36;15573-
15582 | | 2010 | Daniel, David K., B., Raiyani
Himanshu and Das,
Debabrata | Neural Network Modeling for
Estimation of Cell Mass during
Submerged Glucoamylase
Fermentation | IUP Journal of
Chemical
Engineering, | 2: 61-70 | | | Kotay SM, Das D | Microbial hydrogen production
from sewage sludge
bioaugmented with a
constructed microbial
consortium | International
Journal of
Hydrogen Energy | 35;10653-
10659 | | | Dasgupta CN, Gilbert JJ,
Lindblad P, Heidorn T,
Borgvang SA, Skjanes K, Das
D | Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production | International
Journal of
Hydrogen Energy | 35;10218-
10238 | | | Mohanty K, Das D, Biswas
MN | Abatement of Cr(VI) rich wastewater in a novel multistage external loop airlift reactor using acidified activated carbon. | International
Journal of
Environment
and Waste
Management | 2: 239-248 | | 2009 | Das Debabrata | Advances in biohydrogen production processes: An approach towards commercialization, | International
Journal of
Hydrogen
Energy, | 34:7349-
7357 | | | Basak Nitai, Das Debabrata | Photofermentative hydrogen production using purple-non-sulfur bacteria <i>Rhodobacter sphaeroides</i> O.U.001in an annular photobioreactor: A case study | Biomass and
Bioenergy | 33:911-919 | | | Blackburn JM, Liang Y, Das
D | Biohydrogen from Complex
Carbohydrate Wastes as
Feedstocks-Cellulose
degraders from a unique | International
Journal of
Hydrogen
Energy | 34:7428-
7434 | # series enrichment | |
Pandey A, Sinha P, Kotay
SM, Das D | Isolation and evaluation of a
high H2-producing lab isolate
from cow dung | International
Journal of
Hydrogen
Energy | 34:7483-
7488 | |------|---|---|--|------------------| | | Mohan Y, Das D | Effect of ionic strength,
cation exchanger and
inoculum age on the
performance of Microbial Fuel
Cells | International
Journal of
Hydrogen
Energy | 34:7542-
7546 | | | Dutta T, Das AK, Das D | Purification and characterization of [Fe]-hydrogenase from high yielding hydrogen-producing strain, <i>Enterobacter cloacae</i> IIT-BT08 (MTCC 5373), | International
Journal of
Hydrogen
Energy, | 34:7530-
7537 | | | Kotay SM, Das D | Novel dark fermentation involving bioaugmentation with constructed bacterial consortium for enhanced biohydrogen production from pretreated sewage sludge | International
Journal of
Hydrogen
Energy | 34:7489-
7496 | | | Nath K, Das D | Effect of light intensity and initial pH during hydrogen production by an integrated dark and photofermentation process | International
Journal of
Hydrogen
Energy | 34:7497-
7501 | | 2008 | Das D, Veziroglu TN | Advances in biological hydrogen production processes | International
Journal of
Hydrogen
Energy | 33:6046-
6057 | | | Nath K, Muthukumar M,
Kumar A, Das D | Kinetics of two-stage
fermentation process for the
production of hydrogen | International
Journal of
Hydrogen
Energy | 33:1195-
1203 | | | Das D, Khanna N, Veziroglu
TN | Recent developments in biological hydrogen production processes | Chemical
Industry &
Chemical
Engineering
Quarterly | 14: 57-67 | | | Mohan Y, S. Manoj Muthu
Kumar, Das D | Electricity generation using microbial fuel cells | International
Journal of
Hydrogen
Energy | 33:423-426 | | | Kotay SM, Das D | Biohydrogen as a renewable energy resource - prospects | International
Journal of
Hydrogen | 33:258-263 | | | | and potentials | Energy | | |------|--|--|--|-------------------| | | Mohanty K, Das D, Biswas
MN | Treatment of phenolic wastewater in a novel multistage external loop airlift reactor using activated carbon | Separation and
Purification
Technology | 58: 311-319 | | | Mohanty K, Das D, Biswas
MN | Utilization of Arachis
Hypogaea Hull, an Agricultural
Waste for the Production of
Activated Carbons to Remove
Phenol from Aqueous
Solutions | J. Environ. Sci.
Health, Part B | 43:452-463 | | | Das D | International workshop on
biohydrogen production
technology (IWBT 2008) | International
Journal of
Hydrogen
Energy | 33, 2627-
2628 | | 2007 | Muthukumar M, Ghosh D,
Das D | Studies on the improvement of microbial fuel cell for power generation | Ind. J. Chem.
Sci | 5:1603-1609 | | | Basak N, Das D | The Prospect of Purple Non-
Sulfur (PNS) Photosynthetic
Bacteria for Hydrogen
Production: The Present State
of the Art | World Journal
of Microbiology
and
Biotechnology | 23: 31-42 | | | Nath K, Das D | Production and storage of hydrogen: Present scenario and future perspective | Journal of
Scientific and
Industrial
Research | 66: 701-709 | | | Kotay SM, Das D | Microbial hydrogen production
with <i>Bacillus coagulans</i> IIT-BT
\$1 isolated from anaerobic
sewage sludge, | Bioresource
Technology, | 98:1183-
1190 | | | Mohanty K, Das D, Biswas
MN | Mass transfer characteristics of a novel multi-stage external loop airlift reactor | Chemical
Engineering
Journal | 133: 257-264 | | 2006 | Kaushik Nath, Anish Kumar
and Debabrata Das | Effect of some environmental parameters on fermentative hydrogen production by <i>Enterobacter cloacae</i> DM11 | Canadian
Journal of
Microbiology, | 52: 525-532 | | | Vijay Gunasekaran, Shireen
Meher Kotay and
Debabrata Das | Studies on alkaline lipase production by <i>Citrobacter freundii</i> IIT-BT L139 | Indian J of
Experimental
Biology | 44: 485-491 | | | G Chittibabu, Kaushik Nath
and Debabrata Das | Feasibility studies on the fermentative hydrogen production by recombinant <i>Escherichia</i> | Process
Biochemistry | 41: 682-88 | # coli BL-21 | | Biswajit Mandal, Kaushik
Nath and Debabrata Das | Improvement of biohydrogen production under decreased partial pressure of H ₂ by <i>Enterobacter cloacae</i> | Biotechnology
Letters | 28: 831-835 | |------|--|--|--|-------------------| | | Kaushik Nath and
Debabrata Das | Amelioration of biohydrogen production by two-stage fermentation process | Industrial
Biotechnology | 2: 44-47 | | | Das Debabrata , Dutta
Tumpa, Nath Kaushik,
Kotay Shireen Meher, Das
Amit K. and T. Nejat
Veziroglu | The role of Fe-hydrogenase in biological hydrogen production | Current Science | 80: 1627-
1637 | | | Mohanty K, Das D, Biswas
MN | Hydrodynamics of a novel multi-stage external loop airlift reactor | Chem. Eng.
Science | 61: 4617-
4624 | | | Mohanty K, Das D, Biswas
MN | Preparation and Characterization of Activated Carbons from Sterculia alata Nutshell by Chemical Activation with Zinc Chloride to Remove Phenol from Wastewater | Adsorption | 12: 119-32 | | 2005 | Kaushik Nath, Anish Kumar
and Debabrata Das | Hydrogen production
by <i>Rhodobacter</i>
sphaeroides strain O.U. 001
using spent media of
Enterobacter cloacae strain
DM11 | Applied
Microbiology
and
Biotechnology | 68, 533-541 | | | Vijay Gunasekaran and
Debabrata Das | Lipase fermentation: Progress and Prospects | Indian Journal
of
Biotechnology | 4: 437-445 | | | Debjeet Sen and Debabrata
Das | Multiple parameter optimization for the maximization of hydrogen production by <i>Enterobacter cloacae</i> DM11 | Journal of
Scientific and
Industrial
Research | 64: 984-990 | | | Mohanty K, Das D, Biswas
MN | Adsorption of Phenol from
Aqueous Solutions Using
Activated Carbons Prepared
from Tectona grandis sawdust
by ZnCl ₂ Activation, | Chem. Eng. J., | 115: 121-131 | | | Mitra D, Saha B, Das D,
Wiker HG, Das AK | Correlating sequential
homology of Mce1A, Mce2A,
Mce3A and Mce4A with their
possible functions in
mammalian cell entry | Tuberculosis
(Edinb) | 85: 337-345 | | | | of <i>Mycobacterium</i>
tuberculosis performing
homology modeling | | | |------|---|---|--|--------------| | | Das D | Book Review:, BIOHYDROGEN
III, Jun Miyake, Yasuo
Igarashi, Matthias Rögner
(Eds.) | International
Journal of
Hydrogen
Energy | 30: 565-567 | | 2004 | Jayshree Mishra, Seema
Khurana, Narendra Kumar,
Ananta K Ghosh and
Debabrata Das | Molecular Cloning,
Characterization and
Overexpression of a Novel
[Fe]-hydrogenase isolated
from a high rate of Hydrogen
Producing <i>Enterobacter</i>
<i>cloacae</i> IIT-BT 08 | Biochemical and
Biophysical
Research
Communications | 324: 679-685 | | | Kaushik Nath and
Debabrata Das | Biohydrogen production as a
Potential Energy Source-
Present State-of-art, | Journal of
Scientific and
Industrial
Research, | 63: 729-738 | | | Kaushik Nath and
Debabrata Das | Improvement of fermentative hydrogen production - various approach | Applied
Microbiology
and
Biotechnology | 65:520-529 | | | D. K. Daniel, D. Das, A.
Krastanov | Effect of Aeration, Agitation
and Inoculum age on
submerged fermentation
Process for the Production of
Glucoamylase by Aspergillus
awamori NRRL 3112 | Bulgarian
Journal of
Agricultural
Sciences | 10: 583-590 | | | Harboe M, Das AK, Mitra D,
Ulvund G, Ahmad S,
Harkness RE, Das D,
Mustafa AS, Wiker HG | Immunodominant B-Cell
Epitope in the Mce1A
Mammalian Cell Entry Protein
of Mycobacterium tuberculosis
Cross-Reacting with
Glutathione S-Transferase
(GST) | Scandinavian
Journal of
Immunology | 59: 190-197 | | 2003 | Kaushik Nath and
Debabrata Das | Hydrogen from biomass, | Current Science. | 85: 265-271 | | | Das AK, Mitra D, Harboe M,
Nandi B, Harkness RE, Das
D, Wiker HG | Predicted molecular structure
of the mammalian cell entry
protein Mce1A of
Mycobacterium tuberculosis | Biochemical and
Biophysical
Research
Communications | 302: 442-447 | | 2002 | Debabrata Das, P.K. Badri,
Narendra Kumar, Pinaki
Bhattacharya | Simulation and modeling of continuous H ₂ production process by <i>Enterobacter cloacae</i> IIT-BT 08 using different bioreactor configuration | Enzyme and
Microbial
Technology | 31: 867-875 | | | J.Mishra, N. Kumar, A.K.
Ghosh, D. Das | Isolation and molecular characterization of hydrogenase gene from a high rate of hydrogen-producing bacterial strain <i>Enterobacter cloacae</i> IIT-BT 08 |
International
Journal of
Hydrogen
Energy | 27: 1475-
1479 | |------|---|--|--|------------------------------| | | Daniel DK, Biswas N, Das D | Morphological changes in
Submerged cultivation of
Aspergillus awamori for
Glucoamylase production | Indian Journal
of
Biotechnology | 1: 357-362 | | 2001 | Narendra Kumar and
Debabrata Das | Electron microscopy of hydrogen producing immobilized <i>E. cloacae</i> IIT-BT 08 on natural polymers, | International
Journal of
Hydrogen
Energy, | 25: 1155-
1163 | | | N Kumar and D. Das | Continuous hydrogen
production by immobilized
Enterobacter cloacae IIT-BT
08 using lignocellulosic
materials as solid matrices | Enzyme and
Microbial
Technology | 29: 280-287 | | | Narendra Kumar, Agnidipta
Ghosh and Debabrata Das | Redirection of biochemical pathways for the enhancement of H ₂ production by <i>Enterobacter cloacae</i> | Biotechnology
Letters | 23: 537-541 | | | D. Das and T. Nejat
Veziroglu | Hydrogen production by biological processes: a survey of literature | Int. Journal of
Hydrogen
Energy | 26: 13-28 | | | K. Bandhyopadhyay, D.
Das, P. Bhattacharyya and
B. R. Maiti | Reaction engineering studies
on biodegradation of phenol
by <i>Pseudomonas putida</i> MTCC
1194 immobilized on calcium
alginate | Biochemical
Engineering
Journal | 8: 179-186 | | | Banerjee I, Modak JM,
Bandopadhyay K, Das D,
Maiti BR | Mathematical model for evaluation of mass transfer limitations in phenol biodegradation by immobilized <i>Pseudomonas putida</i> | Journal of
Biotechnology | 87: 211-223 | | 2000 | N. Kumar and D. Das | Production and purification of alpha-amylase from hydrogen producing <i>Enterobacter cloacae</i> IIT-BT 08 | Bioprocess
Engineering | 23: 205-208 | | | N. Kumar, P.S. Monga, A.K.
Biswas and D. Das | Modeling and Simulation of
Clean Fuel Production by
Enterobacter cloacae IIT-BT
08 | Int. Journal of
Hydrogen
Energy | 25: 945-952 | | | N. Kumar and D. Das | Enhancement of hydrogen production by <i>Enterobacter</i> | Process | 35: 589-594,
(Erratum 35: | | | | cloacae IIT-BT 08, | Biochemistry, | 1074). | |------|---|--|---|-------------------| | 1999 | D. Selvakumar, S. Dey and D. Das | Production and bioassay of
bialaphos biosynthesized by
Streptomyces hygroscopicus
NRRL B-16256 | Bioprocess
Engineering | 20: 459-462 | | | Bandyopadhyay, D. Das and
B.R. Maiti | Solid matrix characterization of immobilized <i>Pseudomonas</i> putida MTCC 1194 used for phenol degradation | Applied
Microbiology
and
Biotechnology | 51: 891-895 | | | G. Rajesh, M.
Bandyopadhyay and D. Das | Some studies on UASB bioreactors for the stabilization of low strength industrial effluents | Bioprocess
Engineering | 21: 113-116 | | 1998 | Bandyopadhyay K, Das D,
Maiti BR | Kinetics of phenol degradation using <i>Pseudomonas putida</i> MTCC 1194, | Bioprocess
Engineering, | 18: 373-377 | | | D. Das, M. Srinivasu and M.
Bandyopadhyay | Solid state Acidification of
Vegetable waste | Indian J.
Environ. HLTH | 40: 333-342 | | 1996 | Bose K, Das D. | Thermostable alpha-amylase production using <i>Bacillus licheniformis</i> NRRL B14368 | Indian Journal
of Experimental
Biology | 34: 1279-
1282 | | | Das D, Srinivasu M,
Bandyopadhyay M. | Solid state acidification of MSW and the potential of leachate for biomethanation | Indian J.
Environ. HLTH | 38: 193-199 | | | Nandanwar HS, Das D,
Maiti BR | Some studies on Immobilized
Lactobacillus delbruecki
(NCIM-2365) in calcium
alginate for the production of
lactic acid | Indian Chemical
Engineer
Section A | 38: 158-163 | | 1995 | Soni SK, Venkateswara M,
Das D | Studies on Glucoamylase
Produced from <i>Aspergillus</i>
<i>awamori</i> (NRRL-3112) and
their effect on
Saccharification of Potato
Starch | Indian Journal
of Experimental
Biology | 33: 957-961 | | 1994 | Das D, Sikdar K, Chatterjee
AK | Potential of <i>Azolla pinnata</i> as
Biogas Generator and as a
Fish-feed | Indian J.
Environ. HLTH | 36: 186-191 | | 1993 | Das D, Gaidhani NR, Murari
K, Sen Gupta P | Ethanol Production by Whole
Cell Immobilization using
Lignocellulosic Materials as
Solid Matrix | Journal of
Fermentation
and
Bioengineering | 75: 132-7 | | 1987 | R. Guha, D. Das, P.D.
Grover and B.K. Guha | Germicidal Activity of Tar-
distillate obtained from | Agricultural
Wastes | 21: 93-100 | | | | | Pyrolysis of Rice-Husk | | | | | | |------|---|---|---|--|-------------------------|--------------------------------|--|--| | 1982 | 2 Ghosh TK, Das D | | Recov
Proces | nization of Energy
ery in Biomethanation
sses: Part-II Use of
Residue in Batch
m | Process
Biochemistry | 17: 39-42 | | | | — Pu | — Publication of Articles | | | | | | | | | 2020 | Debabrata Das | | biohyd | nercialization of
drogen production
ss from organic wastes | Akshay Urja | 12-13, 29-33 | | | | 2016 | G. Balachanda
Sinha and Deb | • | IIT-Kh
for bid | aragpur leads the way
ofuels | Akshay Urja | 10: 28-31 | | | | 2015 | S Roy and D. I | Das | | ic Wastes in India's
y Supply, | Future Energy | 28-35 | | | | 2014 | D. Das | | Biomass to biohydrogen: a successful path, | | Akshay Urja, | 3: 28-31 | | | | 2010 | D. Das | | Production Technology, the present Senario of Biohydrogen | | Akshay Urja | 3(5) | | | | | D. Das | | Promi | oial Fuel Cell- A
sing Green Energy
ction Technology from
water | Akshay Urja | 3(6) | | | | 2003 | Kaushik Nath
Debabrata Da | | of a fe | y and economic analysis
ermentative hydrogen
ction process | Bioenergy News | 7: 15-19 | | | | 1997 | Debabrata Da | S | nonco | y recovery from
nventional energy
es at Biotechnology
e, IIT Kharagpur | Bioenergy News | 2: 8 | | | | — Pu | — Publication of Book Chapters | | | | | | | | | 2024 | Sanjukta
Banerjee
and
Debabrata
Das | Carbon-Dioxic
Capture Strate
from Industria
Gas by Algae | egies | Algae Mediated
Bioremediation:
Industrial Perspectives | Wiley | ISBN:
9783527352470 | | | | 2022 | Srijoni
Banerjee, | Obtaining commodity | | Algae and Aquatics | Elsevier | Doi.org/10.1016/
B978-0-12- | | | | | Debabrata
Das, Arnab
Atta and
Poojhaa
Shanmugam | chemicals by bio-
refining algal
biomass | Macrophytes in Cities | | 824270-
4.00004-3 | |------|--|--|---|--|---| | | Sanjukta
Banerjee,
Debabrata
Das and
Ananta K.
Ghosh | Production of
bioethanol from
microalgal
feedstock: A
circular biorefinery
approach | Potential and challenges of low carbon fuels for sustainable transport, energy, environment and sustainability | Springer Nature | Doi.org/10.1007/
978-981-16-
8414-2 | | | Chandan
Mahata and
Debabrata
Das | Current Status and
Prospects of
Producing
Biohydrogen | Microbial Biotechnology
for Renewable and
Sustainable Energy | Springer
Nature(ISBN:
978-981-16-
3851-0) | 99-134 | | 2020 | Harshita
Singh and
Debabrata
Das | Biohydrogen from
microalgae | Handbook of
microalgae-based
processes and products
(Eduardo Jacob-Lopes,
Mariana Manzoni
Maroneze, Maria Isabel
Queiroz, Leila Queiroz | Academic Press
(ISBN:
9780128185360) | 391-418 | | 2019 | Srijoni
Banerjee
and
Debabrata
Das | Biodiesel
Production from
Microalgal Biomass
Challenges and
Perspectives | Zepka) Handbook of Algal Technologies and Phytochemicals, Vol 2 (Eds. Gokare R. and Ambati R.) | CRC Press, USA
(ISBN: 13: 978-
0367178192) | 51-62 | | | Vaishali
Singh,
Debabrata
Das | Potential of
Hydrogen
Production From
Biomass | Science and Engineering of Hydrogen-Based Energy Technologies (Ed. Paulo E. V. de Miranda), | Elsevier and
Academic Press
ISBN:
9780128142516 | 132-164 | | 2018 | Ramya
Veerubhotla,
Jhansi L.
Varanasi,
Debabrata
Das | Biofilm Formation
Within Microbial
Fuel Cells | Progress and Recent
Trends in Microbial
Fuel Cells (Eds. K.
Dutta and P.P. Kundu) | Elsevier
ISBN
9780444640178 | 231-242 | | | Jhansi L.
Varanasi,
Ramya
Veerubhotla,
Soumya,
Debabrata
Das | Biohydrogen
production using
Microbial
Electrolytic Cell:
Recent advances
and future
prospects | Bioelectrochemical
System for Biofuels and
Chemicals (Eds. Ashok
Pandeys. Venkata
Mohan) | Elsevier
ISBN:
9780444640529 | 843-870 | | | Harshita
Singh and
Debabrata
Das, | Biofuels from
Microalgae:
Biohydrogen | Energy from Microalgae | Springer
(ISBN
9783319690926) | 201-228 | | | Balachandar
G, Khanna |
Dark-Fermentative
Biohydrogen | Biohydrogen
(Editors: A pandey, S | Elsevier
ISBN: | 79-122 | | | N,
and Das D | Production | Venkat Mohan, Jo-shu
chang,P C. Hallenbeck,
C Larroche) | 9780444642035 | | |------|---|---|---|---|-----------------| | 2017 | Ramya
Veerubhotla
and
Debabrata
Das | Application of MFC as BOD biosensor | "Microbial Fuel Cell: a
bioelectrochemical
system that converts
waste to Watts" (Ed
Debabrata Das) | Springer
ISBN
9783319667928 | 269-284 | | | Soumya
Pandit,
Shruti
Sarode and
Debabrata
Das | Fundamentals of microbial desalination cell | -do- | -do- | 353-372 | | | Jhansi L.
Varanasi and
Debabrata
Das | Bioremediation and power generation from organic wastes using microbial fuel cell | -do- | -do- | 285-306 | | | Jhansi L.
Varanasi,
Ramya
Veerubhotla
and
Debabrata
Das | Diagnostic tools for
the assessment of
MFC | -do- | -do- | 249-268 | | | Jhansi L.
Varanasi and
Debabrata
Das | Characteristics of microbes involved in microbial fuel cell | -do- | -do- | 43-62 | | | Soumya
Pandit and
Debabrata
Das | Principles of microbial fuel cell for the power generation | -do- | -do- | 21-42 | | 2016 | D. Das Debabrata Das and Shantonu Roy | Introduction Biohythane process for the maximization of the gaseous energy recovery | -do-
Annals of the Indian
National Academy of
Engineering XIII | -do-
INAE | 1-20
140-149 | | | Shantonu
Roy,
Debabrata
Das | Nano Biotechnology
Augmenting
Biological Gaseous
Energy Recovery | Nanotechnology for
Energy Sustainability
(Editors: Baldev Raj,
Yashwant Mahajan, and
Van de voorde Marcel) | John Wiley-VCH
(ISBN:
9783527340149) | 249-266 | | | Shantonu
Roy,
Debabrata
Das | Biotechnological
platform for
biohydrogen
production: present
status and future
challenges | Sustainable Biofuels Development: An Inevitable Option to Powering India (Editors: Anuj K. Chandel and Rajeev K. Sukumaran) | Springer
ISBN
9783319502199 | 357-390 | | 2015 | Shantonu
Roy,
Debabrata
Das | Ecobiotechnological
Approaches:
Enrichment
Strategy for
Improvement of H ₂ | Microbial Factories: Biodiversity, Biofuels, Biopolymers, Bioactive molecules and Waste treatment | Springer
ISBN
9788132225973,
ISBN
9788132225980 | 29-46 | | | Debabrata
Das | Production
Introduction | (Editor: V.C. Kalia)
Algal Biorefinery: an
Integrated Approach,
(Editor: Debabrata Das) | (eBook)
Springer
ISBN
9783319228129 | | |------|---|---|---|---|--------------------| | | Shantonu
Roy,
Debabrata
Das | Liquid Fuels
Production from
Algal Biomass | -do- | -do- | 277-296 | | | Shantonu
Roy,
Debabrata
Das | Gaseous Fuels
Production from
Algal Biomass | -do- | -do- | 297-320 | | | Soumya
Pandit,
Debabrata
Das | Role of microalgae
in Microbial Fuel
Cell | -do- | -do- | 375-400 | | | Supratim
Ghosh,
Debabrata
Das | Improvement of Harvesting Technology for Algal Biomass Production | -do- | -do- | 169-194 | | | G.
Balachandar,
S. Roy, and
D. Das | Hydrogen from Biomass - Production Processes via Fermentation | Hydrogen Science and Engineering (Editors: D. Stolten and B. Emonts) | Wiley-VCH
Verlag GmbH &
Co., Berlin,
Germany
ISBN:
9783527332380 | 417-437
303-336 | | 2014 | Kanhaiya
Kumar and
Debabrata
Das | Carbon Dioxide
Sequestration by
Biological Processes | Transformation and
Utilization of Carbon
Dioxide (Editor:
Bhanchandra M.
Bhanage, Masahiko
Arai) | Springer
ISBN
9783642449871 | 303-330 | | 2013 | B. K. Nayak,
S. Pandit, D.
Das | Biohydrogen | Air Pollution Prevention and Control - Bioreactors and Bioenergy | John Wiley &
Sons Ltd.
ISBN:
9781119943310 | 345-382 | | | K. Kumar
and D. Das, | CO ₂ Sequestration
and Hydrogen
Production Using
Cyanobacteria and
Green Algae | Natural and Photosynthesis: Solar power as an energy source (Editor: Reza Razeghifard) | Wiley-Blackwell
Publication
ISBN:
9781118659755 | 173-216 | | | G.
Balachandar,
N. Khanna
and D. Das | Biohydrogen
production from
organic wastes by
dark fermentation | Biohydrogen
(Editors: A pandey
Jo-shu chang
P C. Hallenbeck
C Larroche) | Elsevier
ISBN:
9780444595553 | 103-144 | | 2012 | K. Mohanty
and D. Das | Kinetics of Biohydrogen Production by Dark Fermentation Processes | State of the Art and
Progress in Production
of Biohydrogen
(Editors: Nuri Azbar
and David Levin) | Bentham
Science
Publishers, USA
ISBN:
9781608052240 | 127-136 | | | C. Nag
Dasgupta
and D. Das | Fundamentals of
Biohydrogen
production
processes | Carbon Neutral Fuels Energy Carriers (Editors: T.N. Veziroglu and N. Muradov) | Taylor and Francis Pub. (CRC Press), Boca Raton, FL, ISBN: | 491-546 | | 2010 | S.M. Kotay
and D. Das | Biotechnology in
Waste Treatment
and Pollution
Abatement | Environmental
Security: Human and
Animal Health (Ed. S.R.
Garg) | 9781439818572
IBDC Publisher,
Lucknow, India
ISBN:
9788181891716 | 415-432 | |------|--|---|--|--|---------| | 2005 | K. Nath and
D. Das, | Photoproduction of
hydrogen using
phototrophic
purple non-sulfur
(PNS) bacteria in
column bioreactor | Photo/Electrochemistry
& Photobiology in
Environment, Energy
and Fuel | Research
Signpost Pub.,
Trivandrom,
India
ISBN:
8130800004 | 43-59 | | | J. Mishra, B.
Mallick, T
Dutta and D.
Das | Separation of hydrogenase from the intact cells of Enterobacter cloacae IIT-BT 08 | Proceedings of National
Seminar and Workshop
on Advanced
Separations Process; | Allied Publisher,
Kolkata
ISBN:
8177646664 | 135-142 | | 2004 | K. Nath, N.
Roy, L.
Mukherjee
and D. Das, | Biohydrogenation using <i>Enterobacter cloacae</i> DM11 and a Comparative Energy Analysis with Biomethanation | ENERGY &
ENVIRONMENT: A World
of Challenges and
Opportunities | Science Press
New York Ltd | 273-280 | | | S. Saha, N.
Roy, K. Nath
and D Das, | Biohydrogenation of industrial effluents by Enterobacter cloacae DM11 | Hypothesis V
(Editors: M. Marini, G.
Spazzafumo) | Servizi Grafici
Editoriali
ISBN:
8886281900 | 361-368 | | 2003 | N. Kumar, N.
Roy, J.
Mishra, L.
Mukherjee
and D. Das | Scanning electron microscopy of immobilized whole cells: A case studies on the hydrogen production using immobilized Enterobacter | Science, technology
and education of
microscopy: An
overview | Formatex (ed.
A. Mendez-
Vilas), Spain
ISBN:
8460766985 | 352-362 | | 1992 | C. Renuka
and D. Das | cloacae IIT-BT 08 High rate biodegradation of municipal solid wastes by advanced solid-state fermentation process | Downstream Processing in Biotechnology (Ed. R.N. Mukherjee) | Tata McGraw-
Hill Pub. Co.
Ltd. New Delhi
ISBN:
0074622552 | 351-357 | # - Book Reviewed | 2005 | BIOHYDROGEN III | Jun Miyake, Yasuo
Igarashi, Matthias
Rogner | Elsevier Science Ltd.,
Oxford, UK
187 pages | International
Journal of
Hydrogen
Energy | 30:
565-
567 | |------|-----------------|---|---|---|--------------------| | 2000 | BIOTECHNOLOGY | SA Abbasi and E | Universities Press, | Indian Journal | 38: | METHODS OF POLLUTION CONTROL Rsamasami Hyderabad 300 pages of Experimental 300 Biology